facebook linkedin youtube whatsapp
National Unified Hotline :

+86 22 5807 5652

ارسل لنا عبر البريد الإلكتروني :

gm@geostarpe.com

#Language :

عربيعربي

لافتة داخلية

يبحث

بيت

مانع الانفجار

  • What is a directional well in oil drilling?
    What is a directional well in oil drilling?
    Sep 17, 2025
    Directional drilling technology is one of the most advanced drilling technologies in the global oil exploration and development field today. It relies on special downhole tools, measurement instruments, and process technologies to effectively control the wellbore trajectory, guiding the drill bit to reach the predetermined underground target along a specific direction. This technology breaks the limitation of vertical wells, which "can only develop resources directly below the wellhead". By adopting directional drilling technology, oil and gas resources restricted by surface or underground conditions can be developed economically and effectively, significantly increasing oil and gas production and reducing drilling costs. In essence, a directional well is a drilling method that guides the wellbore to reach the target formation along a pre-designed deviation angle and azimuth. There are three main types of its well profiles: (1) Two-section type: Vertical section + build-up section; (2) Three-section type: Vertical section + build-up section + tangent section; (3) Five-section type: Upper vertical section + build-up section + tangent section + drop-off section + lower vertical section A horizontal well is a type of directional well. Conventional oil wells penetrate the oil reservoir vertically or at a shallow angle, resulting in a short wellbore section passing through the reservoir. In contrast, after drilling vertically or at an angle to reach the oil reservoir, the wellbore of a horizontal well is turned to a near-horizontal direction to remain parallel to the oil reservoir, allowing long-distance drilling within the reservoir until completion. Equipped with high-strength heavy-weight drill pipes (HWDP) for horizontal sections and wear-resistant PDC (Polycrystalline Diamond Compact) bits, the length of the reservoir-penetrating section can range from hundreds of meters to over 2,000 meters. This not only reduces the flow resistance of fluids entering the well but also increases production capacity several times compared to conventional vertical or deviated wells, facilitating enhanced oil recovery. Ⅰ. Application Scenarios 1. Overcoming Surface/Underground Obstacles Surface obstacles: When there are buildings, railways, lakes, or ecological protection zones above the reservoir, directional wells can be drilled outside these obstacles to reach the reservoir at an angle (e.g., development of oil and gas reservoirs around cities). Underground obstacles: When bypassing hazardous geological features such as underground caves, salt domes, and faults, shock-resistant and collapse-proof drill collars and high-pressure blowout preventers (BOP) are used in coordination to avoid drilling accidents like pipe sticking and blowouts. 2. Enhancing Production Capacity of Unconventional Oil and Gas Reservoirs Unconventional reservoirs such as shale gas and tight oil have "extremely low permeability". Vertical wells can only access a small area of the reservoir, leading to limited production capacity. However, horizontal wells traverse the reservoir horizontally over a distance of several hundred meters, increasing the contact area with the reservoir by dozens of times. The daily gas production of a single horizontal well can be 5 to 10 times that of a vertical well, making it a core technology for unconventional oil and gas development. 3. Reducing Development Costs Offshore oil and gas fields: Drilling a cluster of wells from a single offshore platform is far less costly than building a separate platform for each target, resulting in a 30% to 50% reduction in development costs. Mature oil fields: Through "sidETracking" of directional wells (drilling branches from the wellbore of an old well to develop remaining oil reservoirs in the surrounding area), there is no need to drill new vertical wells, significantly reducing investment. Ⅱ. Advantages and Disadvantages Compared with Vertical Wells Advantages 1.Strong resource coverage capability: It can develop offset reservoirs and scattered reservoirs that are inaccessible to vertical wells, improving the production efficiency of oil and gas reservoirs. 2.High single-well production capacity: Horizontal wells, in particular, greatly increase the contact area between the wellbore and the reservoir, offering significant advantages in the development of unconventional oil and gas reservoirs. 3.Superior cost-effectiveness: Cluster wells and multi-lateral wells, supported by integrated drilling rigs and matched drilling equipment (such as top drives and mud pumps), reduce surface occupation and platform construction costs, making them suitable for offshore and intensive development scenarios. Disadvantages 1.High technical complexity: It requires professional directional drillers, rotary steerable systems (RSS), and MWD (Measurement While Drilling) equipment, resulting in a much higher technical threshold than vertical wells. 2.High costs: The investment in a single directional well is usually 20% to 50% higher than that of a vertical well of the same depth (due to increased costs of tools, equipment, and labor). 3.High risks: The complex trajectory leads to high circulating resistance of drilling fluid and increased difficulty in wellbore stability, resulting in a higher incidence of accidents such as pipe sticking and wellbore collapse compared to vertical wells. 4.Long construction cycle: Frequent trajectory adjustments and data measurements are required, leading to a 30% to 60% longer construction cycle than vertical wells of the same depth. Ⅲ. Conclusion In summary, directional drilling represents a milestone in the evolution of oil drilling from simple vertical development to complex and precise development. Currently, in global oil and gas resource development, the application proportion of directional wells has exceeded that of vertical wells, making it one of the core technologies for ensuring oil and gas supply.
    اقرأ أكثر
  • ما هو نظام التحكم في البئر على منصة الحفر؟
    ما هو نظام التحكم في البئر على منصة الحفر؟
    Apr 16, 2025
    ال نظام التحكم في الآبار في منصة الحفر يُعدّ جهازًا أساسيًا لضمان سلامة عمليات الحفر. فيما يلي شرحٌ مُفصّل لمكوناته المختلفة:Ⅰ.مدخنة مانع الانفجار (BOP)مانع انفجار الكبشالهيكل: يتكون بشكل رئيسي من مكونات مثل الغلاف، ومجموعة الكبش، والأبواب الجانبية، وقضبان المكبس، والأسطوانات الهيدروليكية. الغلاف هو الهيكل الرئيسي لمانع انفجار الكبش، حيث تُركّب بداخله مكونات مثل مجموعة الكبش. تتضمن مجموعة الكبش كبشًا مفتوحًا بالكامل وكبشًا مفتوحًا نصف مفتوح، وهما مكونان أساسيان لضمان إحكام إغلاق رأس البئر. تُستخدم الأبواب الجانبية لتركيب مجموعة الكبش وفكها. تربط قضبان المكبس مجموعة الكبش بالأسطوانات الهيدروليكية، ناقلةً الضغط الهيدروليكي. تُوفّر الأسطوانات الهيدروليكية الطاقة اللازمة لتحريك الكبش.مبدأ العمل: عند الحاجة إلى إغلاق رأس البئر، يحقن النظام الهيدروليكي زيتًا عالي الضغط في الأسطوانات الهيدروليكية، دافعًا قضبان المكبس لدفع الكباش أفقيًا. ثم تضغط الكباش بعضها البعض في مركز رأس البئر لإحكام إغلاقه. تُحكم الكباش المفتوحة بالكامل إغلاق رأس البئر تمامًا عند عدم وجود سلسلة حفر فيه. تُحكم الكباش المفتوحة جزئيًا، وفقًا لحجم سلسلة الحفر، إغلاقها وتُحكم الفراغ الحلقي عند وجود سلسلة حفر في رأس البئر.الخصائص: يتميز بأداء إغلاق موثوق، ويتحمل ضغطًا مرتفعًا نسبيًا في رأس البئر. سهل التشغيل، وسريع الأداء، ويمكن التحكم فيه عن بُعد. يتوفر بأنواع ومواصفات متنوعة، مما يجعله يتكيف مع ظروف عمل الحفر المختلفة وتركيبات سلسلة الحفر.مانع الانفجار الحلقيالبنية: تتكون بشكل أساسي من مكونات مثل عنصر مانع الانفجار الحلقي، المكبس، والغلاف، والغطاء العلوي. عنصر التعبئة الحلقي هو المكون الأساسي لمانع الانفجار الحلقي، وعادةً ما يُصنع من مواد مرنة كالمطاط، وله هيكل حلقي. يقع المكبس أسفل العنصر ويتفاعل معه بشكل وثيق. يدعم الغلاف العنصر والمكبس، ويتصل برأس البئر. يُستخدم الغطاء العلوي لتثبيت العنصر وسد الفراغ العلوي.مبدأ العمل: عندما يدخل الزيت الهيدروليكي إلى الأسطوانة الهيدروليكية أسفل المكبس، فإنه يدفعه للتحرك لأعلى. يضغط المكبس على العنصر، مما يتسبب في تشوهه مرنًا، مما يُمسك بسلسلة الحفر أو يُغلق الفراغ الحلقي لرأس البئر. عند الحاجة إلى فتح رأس البئر، يُحرر النظام الهيدروليكي الضغط، ويعود العنصر إلى شكله الأصلي تحت تأثير قوته المرنة، وينفتح رأس البئر.الخصائص: يتكيف مع سلاسل الحفر بمختلف الأحجام والأشكال، بما في ذلك قضبان الكيلي، وأنابيب الحفر، وأطواق الحفر. يتميز بأداء إغلاق جيد، ويسمح لسلسلة الحفر بالتحرك لأعلى ولأسفل والدوران إلى حد معين. مع ذلك، لا يتحمل الضغط العالي لفترات طويلة، كما أن العنصر عرضة للتآكل ويحتاج إلى استبدال منتظم.مانع الانفجار الدوارالهيكل: يتكون بشكل أساسي من مكونات مثل التجميع الدوار، عنصر مانع الانفجار الدوار، الغلاف، المحامل، ونظام التحكم الهيدروليكي. تتضمن المجموعة الدوارة مكونات مثل عمود الدوران، ورأس الدوران، وحواف التوصيل، وهي مكونات دوران سلسلة الحفر. يُستخدم عنصر الختم لسد الفراغ الحلقي بين سلسلة الحفر ورأس البئر. يدعم الغلاف المجموعة الدوارة وعنصر الختم، ويتصل برأس البئر. تُركّب المحامل بين عمود الدوران والغلاف لضمان دوران سلس للمجموعة الدوارة. يُستخدم نظام التحكم الهيدروليكي للتحكم في تثبيت عنصر الختم وفكه.مبدأ العمل: أثناء عملية الحفر، يتصل أنبوب الحفر بمانع الانفجار الدوار عبر وحدة دوارة. عند الحاجة إلى التحكم في ضغط رأس البئر، يوفر النظام الهيدروليكي ضغطًا على عنصر الختم، مما يُمكّنه من تثبيت أنبوب الحفر بإحكام، مما يُؤدي إلى إغلاق رأس البئر بإحكام. في الوقت نفسه، يمكن للوحدة الدوارة، المدعومة بالمحامل، أن تدور مع أنبوب الحفر لضمان سير عملية الحفر بشكل طبيعي.الخصائص: يسمح لسلسلة الحفر بالدوران والتحرك صعودًا وهبوطًا تحت الضغط، مما يُحسّن كفاءة الحفر. يتميز بأداء إغلاق موثوق، ويتحمل ضغطًا معينًا في رأس البئر. مع ذلك، يتميز بهيكل معقد، ومتطلبات صيانة عالية نسبيًا.2.مشعب الاختناق ومشعب القتلمشعب الاختناقالهيكل: يتكون بشكل رئيسي من مكونات مثل صمامات الاختناق، والصمامات المسطحة، وخطوط الأنابيب، ومقاييس الضغط، ومقاييس الحرارة. يُعد صمام الاختناق المكون الأساسي لمجمع الاختناق، ويُستخدم لتنظيم معدل تدفق سائل الحفر وضغطه. أما الصمام المسطح، فيُستخدم للتحكم في فتح وإغلاق خط الأنابيب. تربط خطوط الأنابيب جميع المكونات لتشكل قناة تدفق سائل الحفر. تُستخدم مقاييس الضغط ومقاييس الحرارة لمراقبة ضغط ودرجة حرارة سائل الحفر في مجمع الاختناق.مبدأ العمل: في عمليات التحكم في الآبار، يتم تعديل مساحة تدفق سائل الحفر عن طريق تعديل درجة فتح صمام الاختناق، مما يُتحكم في معدل تدفق سائل الحفر والضغط الخلفي لرأس البئر. عند ارتفاع ضغط رأس البئر، تُخفض درجة فتح صمام الاختناق لزيادة الضغط الخلفي لرأس البئر، مما يُؤدي إلى ارتفاع ضغط قاع البئر وموازنة ضغط التكوين. عند انخفاض ضغط رأس البئر، تُزاد درجة فتح صمام الاختناق لتقليل الضغط الخلفي لرأس البئر ومنع ارتفاع ضغط قاع البئر بشكل مفرط، مما قد يُؤدي إلى فقدان الدورة الدموية.الخصائص: يتميز صمام الاختناق بأداء خنق ودقة ضبط ممتازة، مما يُمكّنه من التحكم بدقة في معدل تدفق وضغط سائل الحفر. يتميز الصمام المسطح بأداء إغلاق جيد، ويتحمل ضغطًا مرتفعًا نسبيًا. يتميز مشعب الاختناق بطرق ومواصفات توصيل متنوعة، ويمكن اختياره وفقًا لمعدات الحفر المختلفة وظروف العمل.قتل متعددالهيكل: يتكون بشكل رئيسي من مكونات مثل مضخة الإيقاف، وصمام عدم الرجوع، وصمام الأمان، وخطوط الأنابيب، ومقاييس الضغط. تُعد مضخة الإيقاف الجهاز الأساسي لمشعب الإيقاف، حيث تُستخدم لضخ سائل الإيقاف إلى البئر. يمنع صمام عدم الرجوع التدفق العكسي لسائل الإيقاف. يُستخدم صمام الأمان لحماية مشعب الإيقاف ومعدات رأس البئر، ومنع ارتفاع الضغط بشكل مفرط. تربط خطوط الأنابيب جميع المكونات لتشكل قناة نقل سائل الإيقاف. تُستخدم مقاييس الضغط لمراقبة الضغط في مشعب الإيقاف.مبدأ العمل: في حالة حدوث ركلة أو انفجار، يتم أولاً تنظيف رأس البئر مانع الانفجار يُغلق، ثم تُشغّل مضخة الإزالة لضخ سائل الإزالة المُجهّز إلى البئر عبر مشعب الإزالة. يمتزج سائل الإزالة بسائل التكوين في البئر، ويُوازن ضغط التكوين تدريجيًا لاستعادة توازن الضغط في البئر. أثناء عملية الإزالة، يتم ضمان سلامة وفعالية عملية الإزالة من خلال ضبط إزاحة وضغط مضخة الإزالة ومراقبة قراءات مقاييس الضغط.الخصائص: تتميز مضخة القتل بإزاحة وضغط كافٍ لضخ سائل القتل بسرعة إلى البئر. يضمن صماما الفحص والأمان سلامة وموثوقية مشعب القتل. عادةً ما تستخدم أنابيب مشعب القتل مواد عالية القوة ومقاومة للتآكل، مما يجعلها تتحمل الضغط العالي وبيئات العمل القاسية.3.أجهزة التحكم في الآبارجهاز مراقبة مستوى خزان سائل الحفرالهيكل: يتكون بشكل رئيسي من مكونات مثل المستشعرات، وأجهزة الإرسال، وأجهزة العرض. تُركّب المستشعرات في خزان سائل الحفر، وتُستخدم لقياس ارتفاع مستوى السائل. تُحوّل أجهزة الإرسال الإشارات التي تقيسها المستشعرات إلى إشارات كهربائية أو هوائية قياسية. تُركّب أجهزة العرض في غرفة العمليات أو وحدة التحكم بمنصة الحفر، وتُستخدم لعرض القيمة العددية وحالة تغير ارتفاع مستوى السائل.مبدأ العمل: تقيس المستشعرات ارتفاع مستوى السائل في خزان سائل الحفر باستخدام مبادئ مثل الطفو، والضغط الهيدروستاتيكي، والموجات فوق الصوتية، ثم تنقل الإشارات المقاسة إلى أجهزة الإرسال. تقوم أجهزة الإرسال بتحويل الإشارات ثم ترسلها إلى أجهزة العرض لعرضها. عند تغير ارتفاع مستوى السائل، تتغير القيمة الرقمية على جهاز العرض تبعًا لذلك. يمكن للمشغل تحديد ما إذا كانت هناك حالات غير طبيعية، مثل الركل أو فقدان الدورة الدموية، تحدث في البئر فورًا، وذلك وفقًا لارتفاع وانخفاض مستوى السائل.الخصائص: يتميز بدقة قياس عالية، ويُمكنه قياس التغيرات الطفيفة في ارتفاع مستوى السائل بدقة. يتميز بسرعة استجابة عالية، ويُمكنه عكس التغيرات الديناميكية في مستوى السائل بسرعة. كما أنه مُزود بمجموعة متنوعة من طرق القياس وأشكال إخراج الإشارة، ويتكيف مع مختلف هياكل خزان سائل الحفر وأنظمة التحكم.مستشعر ضغط الأنبوب الرأسيالهيكل: يتكون بشكل رئيسي من مكونات مثل عنصر حساس للضغط، ودائرة تحويل إشارة، وغلاف. يستخدم العنصر الحساس للضغط عادةً مواد مثل مقاييس الانفعال والبلورات الكهرضغطية، ويُستخدم لاستشعار ضغط سائل الحفر في الأنبوب القائم. تحوّل دائرة تحويل الإشارة الإشارات الكهربائية الضعيفة التي يولدها العنصر الحساس للضغط إلى إشارات كهربائية قياسية. يحمي الغلاف العنصر الحساس للضغط ودائرة تحويل الإشارة من التداخل والتلف الناتج عن البيئة الخارجية.مبدأ العمل: عندما يؤثر ضغط سائل الحفر في الأنبوب القائم على العنصر الحساس للضغط، يتشوه هذا العنصر، مما يُحدث تغيرات في معاملاته، مثل المقاومة أو السعة. تُحوّل دائرة تحويل الإشارة هذه التغيرات في المعاملات إلى إشارات كهربائية، وتنقلها إلى نظام التحكم الآلي في منصة الحفر عبر كابلات. يُعالج نظام التحكم الآلي الإشارات الكهربائية المُستقبَلة ويعرضها. يستطيع المُشغّل تقييم اتجاه تغير ضغط قاع البئر بناءً على تغير ضغط الأنبوب القائم، وضبط معاملات الحفر على الفور، واتخاذ إجراءات التحكم في البئر.الخصائص: يتميز بدقة قياس عالية، ويعكس بدقة تغيرات ضغط سائل الحفر في الأنبوب القائم. يتميز بثبات جيد، ويمكنه العمل بثبات لفترات طويلة في بيئات العمل القاسية. كما يتميز بقدرة جيدة على مقاومة التداخل، مما يمنع تأثير عوامل مثل التداخل الكهرومغناطيسي على نتائج القياس.مستشعر ضغط الغلافالهيكل: يشبه مستشعر ضغط الأنبوب الرأسي، ويتكون بشكل أساسي من مكونات مثل عنصر حساس للضغط، ودائرة تحويل الإشارة، وغلاف. يُركّب العنصر الحساس للضغط على غلاف رأس البئر، ويستشعر الضغط داخله مباشرةً. تُحوّل دائرة تحويل الإشارة إشارة الضغط إلى إشارة كهربائية. يحمي الغلاف العنصر الحساس للضغط ودائرة تحويل الإشارة.مبدأ العمل: عند تغير الضغط في الغلاف، يستشعر العنصر الحساس للضغط تغير الضغط ويُولّد تغيرات في الإشارات الكهربائية المقابلة. تُحوّل دائرة تحويل الإشارات هذه التغيرات إلى إشارات كهربائية قياسية، وتنقلها إلى نظام التحكم الآلي في منصة الحفر عبر كابلات. يُعالج نظام التحكم الآلي الإشارات ويعرضها. يستطيع المُشغّل تقدير حجم الضغط الخلفي لرأس البئر، والعلاقة بين ضغط قاع البئر وضغط التكوين، وفقًا لتغير ضغط الغلاف، مما يُوفر أساسًا هامًا لعمليات التحكم في البئر.الخصائص: يتميز بدقة وموثوقية قياس عالية، ويُمكنه قياس تغيرات الضغط في الغلاف بدقة. سهل التركيب، ويمكن تركيبه مباشرةً على غلاف رأس البئر. يتميز بأداء إغلاق ممتاز يمنع تسرب السائل داخل الغلاف.4.نظام التحكمنظام التحكم الهيدروليكيالهيكل: يتكون بشكل رئيسي من مكونات مثل محطة هيدروليكية، وأنابيب تحكم، وصمامات تحكم اتجاهية، وصمامات تخفيف الضغط، ومراكم. تتضمن المحطة الهيدروليكية مكونات مثل مضخة زيت، ومحرك، وخزان زيت، وفلتر، تُستخدم جميعها لتوفير الطاقة الهيدروليكية. تربط أنابيب التحكم المحطة الهيدروليكية بأجهزة مثل مدخنة مانع الانفجار، ومشعب الاختناق، ومشعب الإيقاف لنقل الزيت الهيدروليكي. تُستخدم صمامات التحكم الاتجاهية للتحكم في اتجاه تدفق الزيت الهيدروليكي، مما يضمن التحكم في عمل كل جهاز. تُستخدم صمامات تخفيف الضغط لتنظيم ضغط النظام ومنع ارتفاعه بشكل مفرط. تُستخدم المراكم لتخزين الطاقة الهيدروليكية وتوفير طاقة إضافية للنظام في حالات الطوارئ.مبدأ العمل: يُشغّل المحرك مضخة الزيت لسحب الزيت الهيدروليكي من خزان الزيت، وضغطه، ثم نقله إلى كل جهاز هيدروليكي عبر أنابيب التحكم. عند الحاجة إلى التحكم في عمل جهاز معين، يُغيّر صمام التحكم الاتجاهي اتجاه تدفق الزيت الهيدروليكي، ويدخل الزيت الهيدروليكي إلى الأسطوانة الهيدروليكية للجهاز المقابل، مما يدفع المكبس للتحرك، مما يُؤدي إلى فتح الجهاز أو إغلاقه. يضبط صمام تخفيف الضغط تلقائيًا معدل تدفق الزيت الهيدروليكي وفقًا لضغط النظام للحفاظ على استقراره. عند انخفاض ضغط النظام، يُطلق المُراكم الطاقة الهيدروليكية المُخزّنة لتكملة ضغط النظام وضمان الأداء الطبيعي للجهاز.الخصائص: يتميز نظام التحكم الهيدروليكي بسرعة استجابة عالية، ودقة تحكم عالية، وقوة إخراج عالية، ويمكنه التحكم بسرعة ودقة في تصرفات أجهزة التحكم في الآبار. يتميز بموثوقية واستقرار جيدين، ويمكنه العمل بثبات لفترات طويلة في بيئات العمل القاسية. يعتمد النظام على تصميم شامل وتدابير حماية سلامة، مما يعزز سلامة النظام وقدرته على تحمل الأعطال.وحدة التحكم عن بعدالهيكل: يتكون بشكل أساسي من مكونات مثل هيكل وحدة التحكم، وشاشة العرض، وأزرار التشغيل، ودائرة التحكم، ونظام تزويد الطاقة. يُعد هيكل وحدة التحكم المكون الأساسي لوحدة التحكم عن بُعد، حيث تُركّب بداخله دائرة التحكم ومكونات إلكترونية مختلفة. تُستخدم شاشة العرض لعرض معلومات حالة أجهزة التحكم في البئر، وبيانات الضغط، وغيرها. تُستخدم أزرار التشغيل للتحكم عن بُعد في عمليات أجهزة التحكم في البئر. تتحكم دائرة التحكم في عمليات نظام التحكم الهيدروليكي أو المشغلات الأخرى وفقًا لتعليمات التشغيل الخاصة بالمشغل. يوفر نظام تزويد الطاقة دعمًا للطاقة لوحدة التحكم عن بُعد، وعادةً ما يكون مزودًا بمصدر طاقة احتياطي، مثل بطارية.مبدأ العمل: يُصدر المُشغِّل تعليمات التحكم بالضغط على أزرار وحدة التحكم عن بُعد. تُحوِّل دائرة التحكم هذه التعليمات إلى إشارات كهربائية، وتُرسِلها إلى نظام التحكم الهيدروليكي أو مُشغِّلات أخرى عبر الكابلات أو وسائل الاتصال اللاسلكية. يتحكم نظام التحكم الهيدروليكي في عمل أجهزة التحكم في البئر بناءً على الإشارات المُستقبَلة. وفي الوقت نفسه، تُجمَع معلومات الحالة وبيانات الضغط لأجهزة التحكم في البئر بواسطة أجهزة استشعار، وتُرسَل إلى شاشة عرض وحدة التحكم عن بُعد ليتمكن المُشغِّل من مُتابعتها آنيًا. وفي حالات الطوارئ، يُفعَّل مصدر الطاقة الاحتياطي تلقائيًا لضمان التشغيل الطبيعي لوحدة التحكم عن بُعد.الخصائص: تتيح وحدة التحكم عن بُعد تشغيل ومراقبة أجهزة التحكم في الآبار عن بُعد، مما يُحسّن سلامة وراحة عمليات التحكم. تتميز بواجهة تفاعلية ممتازة بين الإنسان والآلة، وتشغيل بسيط وبديهي. كما أنها تتميز بوظيفة تسجيل البيانات وتخزينها، ويمكنها تسجيل البيانات وتحليلها أثناء عملية التحكم في الآبار، مما يوفر أساسًا للتحقيق في الحوادث اللاحقة ومعالجتها.
    اقرأ أكثر

اترك رسالة

اترك رسالة
إذا كنت مهتمًا بمنتجاتنا وترغب في معرفة المزيد من التفاصيل ، فالرجاء ترك رسالة هنا ، وسنرد عليك في أقرب وقت ممكن.
يُقدِّم

بيت

منتجات

whatsApp

اتصال